Drones, Vertical Lift Technology, VLT Wings of change: UAVs and sustainable

transportation

- Aeropolis/AIDAA/Euroavia
- Aeronautical Technologies Seminars
- University of Naples
- 26 Jan 2024

Fixed wing and Vertical Lift Technology, VLT, alternatives for Unmanned Aerial Vehicles (UAV) Drones,

Similar systems functions but different Concepts of Operations (CONOPS)

VLT options for Runway Free Operations

Boeing Cargo Air Vehicle, CAV

Autonomous Technology Demonstrator

E-VLT Stability and Control Mechanics

Did you recognize that each rotor has a different pitch angle, with different lift and thrust?

Guardian Agriculture's SC1 Aircraft is the First e-VTOL Authorized to Operate with Agriculture Exemptions replace existing CREWED Aircraft Agricultural Operations.

VOLO Multirotor Drone: VoloDrone Light-lift Urban Logistics

Agriculture, Construction Logistics, **Public Services**, Island Hopping, and Ship to Shore Operations

Max. Payload = 200 kg (441 lbs)

Maximum range 40 Km (25 m)

Beta Lift + Cruse e-VTOL

Alia-250 is targeting a maximum range of 250 nautical miles (463 kilometers) to carry 1,400 pounds (635 kilograms) payload.

CX300 Airport-to-airport all-electric airplane **VTOL Lift, Hover, Loiter and Cruse Modes**

Beta intends to certify an electric fixed-wing CX300 e-CTOL by 2024 for as a Part 23 utility aircraft in piloted electrically powered flight operations. Passenger aviation is the ALIA-250 focus taking the stepwise approach through military, medical, and cargo on our path to a passenger aircraft and then adding a certified e-VTOL vehicle option.

Joby Tilt-rotor

VTOL Lift, Hover and Loiter Modes

VTOL Cruse Mode

Addresses;

 Blade-lift dissimilarities - high-speed limitation
 One Engine/Rotor Inoperative (OEI)/(ORI)
 System (vehicle) sensitivity.

Joby's Tilt-rotor is in a USAF Operational Test and Evaluation to determine operationally effectiveness and suitable for their decision to buy and operate the airplane. Maybe a future technology option to the CV-22 tilt-rotor architecture.

Excess bank toward operating engine, no rudder input. Result: large sideslip toward operating engine and greatly reduced climb performance.

What is OEI

One engine inoperative (OEI) is a condition where one of the engines on a multi-engine aircraft fails and as a result, a thrust imbalance exists between the operative and inoperative sides of the aircraft. This thrust imbalance (asymmetrical thrust) causes several negative effects in addition to the loss of one engine's thrust.

A yawing moment develops, which applies a rotational force to the aircraft tending to turn it toward the wing that carries the engine that failed.

The yaw and roll forces must be counteracted by a combination of rudder and aileron.

A safe OEI maneuvering altitude, typically at least 400 feet above ground level (AGL) for CTOL up to 1,000 for VTOL at "High" operating altitudes.

CONTINUED SAFE FLIGHT

What happens when a rotor or battery-pack fails, ORI?

Rotor System(s) Lift Dissymmetry Tilt Rotor Architecture **ORI** Sensitivity

Military Osprey Tiltrotor Aircraft Crash In Japan, 28 Nov 2023

- US Marines & Air Force special operations units use the **CV-22**:
 - Faster than conventional helicopters to approach enemies from unexpected angles (Agile & Maneuverable)
 - In and out of areas without established runways, where fixed-wing planes may not be able to land with troops and supplies.
 - Combat Search And Rescue missions, CSAR, -- find and rush wounded troops to emergency care.
 - Payload: 4 crew plus 24 personnel (seated), 32 personnel (floor loaded) or 10,000 pounds of cargo.

Combinations of pilot error and mechanical failures have contributed to periodic Osprey crashes.

ORI Event

8 Airman Died.

Cause undetermined? Hard Clutch Engagement Incident?

Rotor System(s) Lift Dissymmetry?

U.S. Military Planes Grounded Pending Investigation

CONOPS Dependent Guidance: Managing Operational Safety, Range and Reserves Battery Powered-Electric Aircraft

- Helicopters and fixed wing aircraft use FADECs
 - Electronic Engine Controller (EEC) or Engine Control Unit (ECU)
 - Battery Management System, BMS
 - Uses performance model for a fuel propulsion management system

Flight Management Systems (FMS) uses FADAC data for

Different Phases of the Flight Energy-management Decisions

- Extended diversion time operations (EDTO) operation by an airplane with two or more turbine engines or rotors, diversion time to an in-route alternative.
 - Safe flight with one engine rotor inoperative (OEI)/(ORI)
 - Forced Landing sites (location and available power/fuel/time)
- Reserves fixed or tailored by operational needs and vehicle architecture
- Similar capabilities/guidance needed
 - High voltage energy storage and fuel-cell propulsion systems

(Analogy with Legacy Fuel Concepts)

- Near-Term, Special Conditions
- Longer-term, Powered Lift guidance

Technical and Regulatory Inputs Management Of On-board Battery Energy Systems.

Battery Management System (BMS) -- Safety, Function Flight Operations (incl. No-Go Conditions) and Durability (Life)

Contingency Fuel Planning for a Search and Rescue, SAR, Mission

- Type Certification, Vehicle Capability
- Operational Certification, Safe/Efficient Operations
 - Typically, Part 135
 - [–] Reserve power for unexpected weather, ORI and ATM/ATC Contingencies
 - Fuel or power weight dispatch requirements
 - Flight planning weight trades effect payload/ range performance

Power (fuel) & Flight planning ESSENTIAL for

Converting Vehicle Capability Into Operational Utility

Power (Fuel) Planning for Notional Search And Rescue SAR Mission

Momentum Simulation										
Mission Phases	Altitude	Speed	Cargo Payload Changes (kg/lbs)	Planed Distance	Planed Leg Fuel Consumed Kg					
Take-off	Sea Level	Hover			26.7					
Flight out	Sea Level	70 m/sec		140 km/82 m	99.3					
Loiter	Sea Level	50 m/sec			17.6					
Sustained Hover	Sea Level	Hover			52.2					
Loiter	Sea Level	50 m/sec	Drop Medic lose 80 kg., 176 lbs.		35.1					
Sustained Hover	Sea Level	Hover	Retrive Medic and Patient add 160 kg., 353 lbs		50.6					
FlightBack	Sea Level	70 m/sec		140 km/82 m	98.6					
Land	Sea Level	Hover			25.2					
N	lission Plann	280 km. 164 miles	405.3							
					Planed Fuel					

- Momentum methodology
 - Westland Lynx data Typical SAR mission

 - 4 Hover demands
 - 2 Loiter
 - 2 cruse segments
 - 1 reduction in payload
 - 1 increased payload
- Similar elements to cargo logistic power demand elements
 - Cargo delivery (reduced payload)
 - Cargo transportation with changing payloads.

Contingency Fuel Planning for a Search And Rescue, SAR, Mission

		Mom	entum Simulati	on	Contingencies							
Mission Phases	Altitude	Speed	Cargo Payload Changes (kg/lbs)	Plane d Distance	Planed Leg Fuel Consumed Kg		Added Fuel Weight Fractional Reserve Factors	Added Individual Fractional Fuel Reserves	Total Fuel Kg	Planed Times (m)	Contingency Reserve Times (m)	Total Time
Take-off	Sea Level	Hover			26.7		0	0.00	26.70	5	0.00	5.00
Flight out	Sea Level	70 m/sec		140 km/82 m	99.3		0	0.00	99.30	23.8	0.00	23.80
Loiter	Sea Level	50 m/sec			17.6		3%	0.53	18.13	5	0.15	5.15
Sustained Hover	Sea Level	Hover	Drop Medic lose 80 kg., 176 lbs.		52.2		5%	2.61	54.81	10	0.50	10.50
Loiter	Sea Level	50 m/sec			35.1		3%	1.05	36.15	10	0.30	10.30
Sustained Hover	Sea Level	Hover	Retrive Medic and Patient add 160 kg., 353 lbs		50.6		5%	2.53	53.13	10	0.50	10.50
FlightBack	Sea Level	70 m/sec		140 km/82 m	98.6		0	0.00	98.60	23.8	0.00	23.80
Land	Sea Level	Hover			25.2		0	0.00	25.20	3.8	0.00	3.80
Mission Planning (out & return)				280 km. 164 miles	405.3	405.3		6.72	412.02	91.4	1.45	92.85
					Planed Fuel		Contingency Fuel		TOTAL		Times (Minutes)
					Final Departur Requirement	re s	130%		536			121
									KGrams			Minutes

Operating Environment example SAR Lift, Loiter & Hover Lift is Lost at Hot and High Conditions (6000 ft, -40C -- +40C)

37 km/h - 28 Nov 2023

Lo Stagnone Island, Italy (Sicily) **Sea Level.** 04:09:58 pm, GMT+1 – wind 37 km/hr., gusting 46 km/hr

	тнυ	, NO\	/ 30						FRI,	DEC	1						SAT,	DEC	2						SUN	, DEC	3				
Time	01	04	07	10	13	16	19	22	01	04	07	10	13	16	19	22	01	04	07	10	13	16	19	22	01	04	07	10	13	16	1
Wind direction	t	7	7	7	1	1	٢	1	1	7	٢	1	1	1	1	٢	1	1	ĸ	\rightarrow	7	X	7	1	1	7	7	×	7	¥	`
Wind speed (km/h)	9.7	16	23	34	39	33	32	36	39	45	48	48	46	38	39	40	35	21	3.2	16	33	29	26	28	32	32	28	34	36	30	2
Wind gusts (km/h)	13	19	30	48	49	44	47	53	57	64	67	66	66	55	54	55	50	33	11	29	41	33	29	31	39	36	31	33	37	33	2
Temperature (°C)	16	15	15	17	19	19	18	18	18	18	19	20	20	19	18	18	18	17	17	18	17	17	16	16	15	15	14	15	15	14	1
Cloud coverage												-				-		-		-			-								

University of Colorado Boulder Team: Flight Management System for Unmanned Aerial Vehicles (Drones) and Contingency Reserves.

26 Jan 2024

Hot, Heavy and High Operating Environment SAR Lift, Loiter & Hover Lift is Lost at Hot and High Conditions (6000 ft, at -40C -- +40C) ISO SL-Std. Day is 15° C or 59° F

A reference rotor airfoil (SC1095) generating 21,000 lbs. sea level thrust,

- At operation in hot conditions hot and high conditions (6000 ft, 1,829 m, 46 C, 115°F),

Available Trust is About 18,400 Lbs., - 2,590lb Loss In Lift.

- Incorporating the SMA **Camber-morphing Skin** extends from the blade root along the inboard blade span can improve lift; https://doi.org/10.1177/1045389x20953613

Reference Rotor Airfoil	% Adaptive Span Camber	Lift, lbs.	Lift Reduction, or Improvement	% Change				
SL, 46 °C	-	21,000 lbs.	-	-				
	0	18,410 lbs.	-2,590 lbs.	-12.35				
1,829 m ,	25%		+290 lbs.	11%				
46 °C <i>,</i> (115°F) <i>,</i>	50%		+1,137 lbs.	40%				
	75%		2,185 lbs.	82%				

Incorporating the SMA camber-morphing skin, along the inboard span, recovered lost lift, Hover & Loiter Performance with a modest power penalty.

Expanding Performance Envelopes

Prescriptive Power (Fuel) Management Payload-range Effects.

to

Performance Based Contingency Power Management

• Power (Battery) management system integrated into FEDAC supported by data storage will provide a statical correlation between planed versus actual flight planning.

Hot, High and Heavy Thrust/Lift Retention

• Adaptive Rotor Blade Compensating for "Aid-density" Effects

VTL Air Cargo Logistics Opportunities/Challenges

- Conventional drones, helicopter operations and/or other transport options:
 - **Emergency transport** of goods: Transporting required goods when disaster event occurs.
 - Inter-facilities: Transporting goods or products between facilities owned by a company/organization.
 - Cargo delivery (sea and mountainous areas):

Transporting Cargo Along Routes over the Sea and within Mountain Areas (Incl. Remote Medical Care and SAR).

- Cargo Delivery for urban areas (UAM) and Transporting cargo in Regional Areas, (RAM) regional air mobility.
 Concept of Operations (CONOPS) for UAM and RAM are different, FedEx example.
- Various cargo applications expected to deliver products *before passenger transport is permitted*,
 - Cargo transport may bring in more revenue than passenger-derived revenue

Guardian will earn revenue, delivering SC1 in 2024

- Cargo transport related to humanitarian relief and emergency response will build confidence in, and enthusiasm for, E-VTOL.
- Advanced Flight Simulation Fuel Planning
- Power based FADEC
- Italy's Cargo Transport

Ships, and Trucks, and High-speed Trains - Utility Aircraft Too?

Rural-Regional Air-Cargo Options?

Cargo Logistics Options;

Which CAPABILITY satisfies specific CONOPS needs?

Trucks and Trains, and (Also ?) some Airplanes

e-VTOL Urban Air Cargo

e-STOL Regional Air Cargo

Technology Competition \iff Capability/Utility

jchalpin.blogspot.com/

High Speed Rail

•••

Abbiamo finito

Forza Napoli

BUON ANNO NUOVO